67-剪绳⼦
题目描述
给你⼀根⻓度为n 的绳⼦,请把绳⼦剪成整数⻓的m 段( m 、n 都是整数, n>1 并 且m>1 , m<=n ),每段绳⼦的⻓度记为k[1],...,k[m]。请问k[1]x...xk[m] 可能的最⼤乘积是多少?例如,当绳⼦的⻓度是8 时,我们把它剪成⻓度分别为2 、3 、3 的三段,此时得到的最⼤乘积是18`。
输⼊描述:输⼊⼀个数n,意义⻅题⾯。(2 <= n <= 60)
返回值描述:输出答案。
示例1
输⼊:8
返回值:18
思路及解答
备忘录
本题的解答思路就是每个⻓度的绳⼦,要么最⻓的情况是不剪开(⻓度是本身),要么⻓度是剪开两段的乘积。因此每个⻓度 length 都需要遍历两个相加之后等于 length 的乘积,取最⼤值。
初始化值⻓度为 1 的值为 1 ,从⻓度为 2 开始,每⼀种⻓度都需要遍历两个⼦⻓度的乘积。
显然,为了避免多次重复计算,可以写个备忘录
public class Solution {
public int cutRope(int target) {
if (target <= 1) {
return target;
}
int[] nums = new int[target + 1];
nums[1] = 1;
nums[0] = 1;
for (int i = 2; i <= target; i++) {
int max = i;
for(int j=0;j<=i/2;j++){
int temp = nums[j] * nums[i-j];
if(temp > max){
max = temp;
}
}
nums[i]=max;
}
return nums[target];
}
}动态规划
这道题,还可以⽤动态规划的思维来做,假设绳⼦⻓度为 n 的 最⼤的⻓度为 f(n) ,那你说 f(n) 怎么计算得来呢?
- f(n) 可能是 n(不切分)
- 也可能是 f(n-1) 和 f(1) 的乘积
- 也可能是 f(n-2) 和 f(2) 的乘积
- ......
那么也就是想要求 f( n ) 我们必须先把 f(n-1) , f(n-2) ...之类的前⾯的值先求出来, f(1)=1 这是初始化值。
public class Solution {
public int cutRope(int target) {
int[] dp = new int[target + 1];
dp[1] = 1;
for (int i = 2; i <= target; i++) {
for (int j = 1; j < i; j++) {
dp[i] = Math.max(dp[i], (Math.max(j, dp[j])) * (Math.max(i - j, dp[i - j])));
}
}
return dp[target];
}
}